
143

The Rip-Off Artist
In the end of 2017, I was running out of material, but I wanted to make a demo to run on a cool SoC: The NVidia

Tegra X2. It had 4 useful ARM cores, 2 semi-useful ones, and a 256 Core GPU.

shadertoy.com, an absolutely awesome website, has some of the best GLSL shader coders on the planet, but it

seemed that the target GPU at the time was significantly more powerful than the one in the X2. I settled on finding

some really good shaders there and tried squeezing them into the 256 measly GPU cores of the X2. It was harder

than you'd think. And there was the target to get it done in time for Christmas 2017, leaving around 3 months to do

it.

I did my best to abide by the licensing conditions back then. All of the effects, except the Julia quaternions and my

raytracer, were based on code from shadertoy.com. The site uses an Attribution-NonCommercial-ShareAlike 3.0

Unported license35. The original author and link to the ShaderToy page with original source code is listed below. All

the modified shaders and control code are still available on my website.

Effect Name Link Author

Galactic Dance https://www.shadertoy.com/view/XtlGWs Sinuousity

Glow City https://www.shadertoy.com/view/XlsyWB mhnewman

Raytracer Corneliusen (CC0 1.0 license)

Noise 3D https://www.shadertoy.com/view/4ddXW4 revers

Julia Quaternions http://www.cs.cmu.edu/~kmcrane/ Keenan Crane (no license)

More Colorful Than Average https://www.shadertoy.com/view/ltBcRc ollj

Seascape https://www.shadertoy.com/view/Ms2SD1 TDM

Transparent Lattices https://www.shadertoy.com/view/Xd3SDs Shane

Twofield https://www.shadertoy.com/view/Xs2XDV w23

Torus Thingy https://www.shadertoy.com/view/llSyWD bal-khan

Let's find out how little GPU computing power the X2 really has. GFLOPS is a synthetic measurement of a situation

that never occurs: It assumes every instruction issued is FMA (fused multiply add). So, given that the operational

units are pipelined, it's starting one FMA per clock and completing one FMA per clock. FMA is 2 basic operations, so

somebody had the bright idea to call that 2 operations per clock. Simple to calculate, but not particularly useful.

It's probably more interesting to look at how many, or few, cycles can be given to each pixel per frame and get a grip

of how little it was. The GPU was running at 1.3 ghz. The number of cycles available per second would be

1.300.000.000 times 256 = 332.800.000.000. I once had a manager who thought that was an enormous number and

cutting-edge. He hadn't been paying attention to PC hardware developments for a long time. Back then I had a

graphics card that could do about 5 TFLOPS as defined above. And it had 5 times the ram bandwidth of the X2. Or

was it 10? Not important. The difference was gigantic.

Assume the target is to render a 1920x1080 picture 60 times per second. That is a total of 1920*1080*60 =

124.416.000 pixels. Divide the number of cycles by that and the total is 2674 cycles per pixel per frame. That's not a

lot, especially if doing really stupid things, like simulating a sea. Let's put that in perspective: A float operation like

FMA takes about 8 cycles but is fully pipelined. Assuming instruction stalls can be avoided by not using library math

functions and unrolling enough, the next hurdle is if-else constructs, where everybody takes the cost of both

branches, as explained earlier. Then there's the looming presence of running out of registers or the compiler getting

confused. Any misses will make the cycle count fall quickly. Very quickly.

Luckily, shader memory operations could be mostly eliminated, since there wasn't much, except for the display: The

output, some overlays, and the occasional transition. That doesn't add up to a lot. Still, it meant that making this

demo was doomed from the start. Or was it? Let's find out!

The control code ended up at about 2000 lines. The 11 GPU shaders were a total of 2500 lines. No animals were

harmed, but more importantly: No textures were used as part of the effects. It's guaranteed to output 1080p60 with

35 https://creativecommons.org/licenses/by-nc-sa/3.0/

Excerpt from the book Real Programming (2021) by Corneliusen & Julin.

More information: www.ignorantus.com/real/

https://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.ignorantus.com/real/

144

synchronized music. The music playback had to be removed due to copyright issues but trust me on that one. Total

runtime after setup is precisely 5 minutes, so there's 10 effects and each effect runs for 30 seconds. (The 11th shader

is a scaler. A low budget bilinear scaler tweaked slightly so the zooms look spiffy. It was the usual crap: The NVidia

standard shader is cool unless it's being told to scale from the center on an image with constantly shifting

coordinates. I'll get back to that.) It will run and look correct in 1440p or 2160p, but the framerate will drop below 60

now and then. More often now than then on the X2.

One version was rushed out in time for Xmas 2017. It didn't have 60 fps in all the effects. A fixed version was

released a bit later, Nvidia Jetson TX2 Xmas Demo 2017 Remastered, in April 2018. Ok, so it took a while to fix the 60-

fps issue all the way.

The first tune used in the video is called Galactic Damages by Jingle Punks. It was found in the YouTube Audio

Library. I'd think such sites were picky about licenses, but it just says, "You're free to use this song in any of your

videos.". Yeah, right. Not doing that mistake again. The music was pretty cool, in spite of the license. The second

tune is called Cephalopod by Kevin MacLeod. A rather hard 90s style techno tune that keeps the blood flowing. I love

it! Your mileage may differ.

It's labelled as a Corneliusen-Ringstad production. Tor Ringstad provided invaluable technical information about the

X2 and sorted out assorted Android and Linux technicalities regarding the output display. 59.94 hz refresh, anybody?

Just say no! It's 60 hz or the highway!

As mentioned, the original code for most of these shaders were supposed to run on much more powerful GPUs than

the X2. I'd say 6 times the shaders and 10 times the memory bandwidth, and I'm probably being conservative. As

such, I guess the authors hadn't bothered maxing them out. And maxing out was needed to make them run in 60 fps

on the X2.

Let's review some of the more interesting changes I did back then. The methods should still be applicable to similar

problems today. It's strongly recommended to refer to the original source on ShaderToy while reading this chapter.

The website is absolutely amazing: Just add some changes and run the shader in the browser. Quite fun!

145

Glow City - based on code by mhnewman

It's a cityscape with flashing lights on top. The ground is covered in fog. Very eerie.

The unchanged Glow City produced roughly 16 fps on the Jetson TX2, mainly because there's too many buildings and

they're too low for the poor X2. So, reduce the building count to 100 and do one iteration of the j-loop in main.

Increase the base height of the buildings and reduce the randomness slightly to cover up the background. And get rid

of the fog. Eerie mode slightly reduced. Damn.

The noise/hash functions were pretty advanced. The original code looked like this:

const float tau = 6.283185;

float hash1(vec2 p2) {

 p2 = fract(p2 * vec2(5.3983, 5.4427));

 p2 += dot(p2.yx, p2.xy + vec2(21.5351, 14.3137));

 return fract(p2.x * p2.y * 95.4337);

}

float hash1(vec2 p2, float p) {

 vec3 p3 = fract(vec3(5.3983 * p2.x, 5.4427 * p2.y, 6.9371 * p));

 p3 += dot(p3, p3.yzx + 19.19);

 return fract((p3.x + p3.y) * p3.z);

}

vec2 hash2(vec2 p2) {

 vec3 p3 = fract(vec3(5.3983 * p2.x, 5.4427 * p2.y, 6.9371 * p2.x));

 p3 += dot(p3, p3.yzx + 19.19);

 return fract((p3.xx + p3.yz) * p3.zy);

}

vec2 hash2(vec2 p2, float p) {

 vec3 p3 = fract(vec3(5.3983 * p2.x, 5.4427 * p2.y, 6.9371 * p));

 p3 += dot(p3, p3.yzx + 19.19);

 return fract((p3.xx + p3.yz) * p3.zy);

}

vec3 hash3(vec2 p2) {

 vec3 p3 = fract(vec3(p2.xyx) * vec3(5.3983, 5.4427, 6.9371));

 p3 += dot(p3, p3.yxz + 19.19);

 return fract((p3.xxy + p3.yzz) * p3.zyx);

}

float noise1(vec2 p) {

 vec2 i = floor(p);

 vec2 f = fract(p);

 vec2 u = f * f * (3.0 - 2.0 * f);

 return mix(mix(hash1(i + vec2(0.0, 0.0)),

 hash1(i + vec2(1.0, 0.0)), u.x),

 mix(hash1(i + vec2(0.0, 1.0)),

 hash1(i + vec2(1.0, 1.0)), u.x), u.y);

}

146

It's a noise function where enough randomness is needed, but not total, and not just a simple sine pattern. It can be

reduced by using a set of sines with some factors and just tweaking it until it looks ok:

vec2 hash2(vec2 p2)

{

 return vec2((sin(p2.x * p2.y) + 1.0f) / 2.0f, cos(p2.x * p2.y) + 1.0f);

}

vec2 hash2(vec2 p2, float p)

{

 return vec2(sin(p2.x) + 1.0f, cos(p2.y) * p);

}

float noise1(vec2 p)

{

 return ((sin(p.x * 5.78f) * cos(p.y * 4.23f)) + 1.0f) / 2.0f;

}

Increase the beacon probability and change the window weighting. A side effect is that there'll now be colored

windows without doing any work. Free stuff for everybody!

const float windowSize = 0.075;

const float windowSpead = 1.0;

(...)

const float beaconProb = 0.0006;

And then it ran at a comfortable 73 fps. It didn't have the gloomy feeling of the original, but it's flashier. I still like

flashy stuff.

Noise 3D - based on code by revers

Doesn't everybody love floating blobs? Many floating blobs! The unchanged version delivered 13 fps, again primarily

because of heavy noise calculations. A bit too early to call it a trend. The original was:

float hash(float h)

{

 return fract(sin(h) * 43758.5453123);

}

float noise(vec3 x)

{

 vec3 p = floor(x);

 vec3 f = fract(x);

 f = f * f * (3.0 - 2.0 * f);

 float n = p.x + p.y * 157.0 + 113.0 * p.z;

 return mix(mix(mix(hash(n + 0.0), hash(n + 1.0), f.x),

 mix(hash(n + 157.0), hash(n + 158.0), f.x), f.y),

 mix(mix(hash(n + 113.0), hash(n + 114.0), f.x),

 mix(hash(n + 270.0), hash(n + 271.0), f.x), f.y), f.z);

}

147

The only point of interest is that the relation between the hash values remain the same. So, hash value n+157 has to

reappear when n+0 gets there, otherwise it’s just an expensive random function. We’re trying to make a tunnel with

floating blobs, not random... err, crap.

So: On the CPU, precalculate a table of vec4 values that's a power of two in size so it wraps nicely. The formula used

is the same as in the original, but on a significantly smaller scale. It has just 256 entries, which seems to be enough to

generate an interesting result. 128 looked crap.

#define TABLELEN 256

#define TABLEMASK (TABLELEN-1)

(...)

 for(int i = 0; i < TABLELEN; i++) {

 v4 v;

 v.x = fract(sinf(((i + 0)&TABLEMASK) * 43758.5453123f));

 v.y = fract(sinf(((i + 157)&TABLEMASK) * 43758.5453123f));

 v.z = fract(sinf(((i + 113)&TABLEMASK) * 43758.5453123f));

 v.w = fract(sinf(((i + 270)&TABLEMASK) * 43758.5453123f));

 gpuj->table[i] = v;

 }

(...)

Make a new noise function that reads from the table using LDC.F32X4 before mix, which just costs a cool 2 cycles.

Take care to handle negative numbers correctly:

float noise(vec3 x00)

{

 ivec3 p00 = ivec3(floor(x00));

 vec3 f00 = fract(x00);

 f00 = f00 * f00 * (3.0 - 2.0 * f00);

 uint n00 = uint(abs(p00.x + p00.y * 157 + 113 * p00.z));

 vec4 h00 = table[(n00+0u)&uint(TABLEMASK)];

 vec4 h01 = table[(n00+1u)&uint(TABLEMASK)];

 h00 = mix(h00, h01, f00.x);

 h00.xy = mix(h00.xz, h00.yw, f00.y);

 h00.x = mix(h00.x, h00.y, f00.z);

 return h00.x;

}

Unfortunately, the compiler refused to generate LRP (linear interpolate) instructions, unknown for which reason.

Interleaving multiple noise calls to avoid stalls didn't work very well, since it would deinterleave them to save

registers. There's that thing again. Should probably have looked into it. Didn't. No solution this time, either.

Adding the table-based noise function, killing off soft shadows and occlusion, and reducing depth to 96 gave 34 fps. A

good start!

Unfortunately, the result of all these adjustments was serious visual artifacts. But couldn't just md be adjusted on the

fly so there's more detail when it's close and less detail further in? Start MD at 0.9 and multiply it by 1.025 for each

step after the first 24 steps are done. This was the case in several of the shaders. Let's review the idea once. It's quite

simple. Or not, the ordering of the if statements is also critical. It was imperative back then that the md

multiplication happened before the Far test, for some obscure reason.

float castRay(vec3 ro, vec3 rd)

{

 float t = 0.0f;

 float md = MarchDumping;

 for(int i = 0; i < MAX_STEPS; i++) {

 float res = map(ro + rd * t);

 if(res < precis) break;

148

 t += res * md;

 if(i > 24) md *= 1.025f;

 if(t > Far) break;

 }

 return t;

}

This gave the needed 60 fps and looks almost like the original. Yeah, there's still some artifacts, but it's running in

720p60 on a small SoC, not a discrete GPU.

Seascape - based on code by TDM

Ah, the joy of simulating a sea when unlimited processing power is not an option. The sea is a plane that's distorted

by a complex noise function (I’m simplifying a lot here):

float hash(vec2 p) {

 float h = dot(p,vec2(127.1,311.7));

 return fract(sin(h)*43758.5453123);

}

float noise(in vec2 p) {

 vec2 i = floor(p);

 vec2 f = fract(p);

 vec2 u = f*f*(3.0-2.0*f);

 return -1.0+2.0*mix(mix(hash(i + vec2(0.0,0.0)),

 hash(i + vec2(1.0,0.0)), u.x),

 mix(hash(i + vec2(0.0,1.0)),

 hash(i + vec2(1.0,1.0)), u.x), u.y);

}

What looks almost like that? It's again a complex noise function! Let's call it a trend now. This time it's a collection of

sines, so I tried out assorted random crap. It mostly looked like crap with very visible sine patterns. Crap. But I

stumbled upon this combination that sort of worked:

float noise(in vec2 p)

{

 return (sin(p.x * 1.91f) + cos(p.y * 1.71f)) * 0.75f;

}

That's super cheap and gives it a "sea'ish" look

Next is the map and map_detailed functions. It's enough to remove one sea_octave call to stay marginally above 60

fps with some skyline, so remove the last one in map and multiply the first result by 1.4.

I like a straight skyline, so remove the "dir.z += length(uv) * 0.15;" in main.

To get constant 60 fps, let's try reducing some more stuff. Move ang, orig, and m calculation to the CPU per frame:

 if(d->type == DEMO_SEASCAPE) {

 float time = gpucommon->frame * 0.3;

 gpusea.ang = v4_set(sinf(time*3.0f)*0.1f, sin(time)*0.2f+0.3f, time, 0.0f);

 gpusea.ori = v4_set(0.0f, 3.5f , time*5.0f, 0.0f);

149

 v2 a1 = v2_set(sinf(gpusea.ang.x), cosf(gpusea.ang.x));

 v2 a2 = v2_set(sinf(gpusea.ang.y), cosf(gpusea.ang.y));

 v2 a3 = v2_set(sinf(gpusea.ang.z), cosf(gpusea.ang.z));

 gpusea.m0 = v4_set(a1.y*a3.y+a1.x*a2.x*a3.x, a1.y*a2.x*a3.x+a3.y*a1.x, -a2.y*a3.x, 0.0f);

 gpusea.m1 = v4_set(-a2.y*a1.x, a1.y*a2.y, a2.x, 0.0f);

 gpusea.m2 = v4_set(a3.y*a1.x*a2.x+a1.y*a3.x, a1.x*a3.x-a1.y*a3.y*a2.x, a2.y*a3.y, 0.0f);

 }

Untangle heightMapTracing. The unchanged version was a bit too complicated:

float heightMapTracing(vec3 ori, vec3 dir, out vec3 p) {

 float tm = 0.0;

 float tx = 1000.0;

 float hx = map(ori + dir * tx);

 if(hx > 0.0) return tx;

 float hm = map(ori + dir * tm);

 float tmid = 0.0;

 for(int i = 0; i < NUM_STEPS; i++) {

 tmid = mix(tm,tx, hm/(hm-hx));

 p = ori + dir * tmid;

 float hmid = map(p);

 if(hmid < 0.0) {

 tx = tmid;

 hx = hmid;

 } else {

 tm = tmid;

 hm = hmid;

 }

 }

 return tmid;

}

The first map call is always the same, so it becomes the much simpler

vec3 heightMapTracing(vec3 ori, vec3 dir, out float hx)

{

 vec3 p;

 float tm = 0.0;

 float tx = 1000.0;

 float hm = 1.0f; // ori fixed per frame, so close enough

 float tmid = 0.0;

 for(int i = 0; i < NUM_STEPS; i++) {

 tmid = mix(tm, tx, hm / (hm-hx));

 p = ori + dir * tmid;

 float hmid = map(p);

 if(hmid < 0.0) {

 tx = tmid;

 hx = hmid;

 } else {

 tm = tmid;

 hm = hmid;

 }

 }

 return p;

}

getPixel can be folded into main, the for loops stripped out, hx moved. The remaining important stuff is then:

(...)

 float hx = map(ori.xyz + dir * 1000.0f);

 if(hx > 0.0f) {

 outColor = vec4(getSkyColor(dir), colscale);

 return;

 }

 vec3 p = heightMapTracing(ori.xyz,dir, hx);

(...)

The result is something resembling the original. The sea is much more synthetic, but the patterns look kind of neat.

And it delivers 60 fps. A side effect of working with sea simulations is that it'll ruin sea-based movies forever. Is the

sea real, or is it simulated? It's annoying having to walk up to the TV and look for patterns all the time.

150

Transparent Lattices Blobs - based on code by Shane

This one was originally called Transparent Lattices. Unfortunately, the transparent lattices were kind of boring.

Luckily, the blob code was still in the shader but commented out. Unfortunately, the blobs were also rather boring.

They needed something on their surfaces. Let's start with the unchanged calcNormal code, except the comment,

which is new:

// Boring blobs

float map(vec3 p)

{

 p = (cos(p*.315*2.5 + sin(p.zxy*.875*2.5)));

 float n = length(p);

 p = sin(p*6. + cos(p.yzx*6.));

 return n - 1. - abs(p.x*p.y*p.z)*.05;

}

vec3 calcNormal(vec3 p, float d)

{

 const vec2 e = vec2(0.01, 0);

 return normalize(vec3(d - map(p - e.xyy), d - map(p - e.yxy), d - map(p - e.yyx)));

}

The map calls were unwieldy, so I tried untangling them. It's very easy to do that incorrectly, so I short circuited a

couple of them, ran it... and welcome funky blobs with awesome looking surfaces:

// Funky blobs

vec3 calcNormal(vec3 p, float d)

{

 vec3 r0 = cos(p * .315 * 2.5 + sin(p.zxy * .875 * 2.5)); p -= 0.01f;

 vec3 r1 = cos(p * .315 * 2.5 + sin(p.zxy * .875 * 2.5));

 vec3 v0 = vec3(r1.x, r0.y, r0.z);

 vec3 v1 = vec3(r0.x, r1.y, r0.z);

 vec3 v2 = vec3(r0.x, r0.y, r1.z);

 float n0 = length(v0);

 float n1 = length(v1);

 float n2 = length(v2);

 v0 = sin(v0 * 6. + cos(v0.yzx * 6.));

 v1 = sin(v0 * 6. + cos(v0.yzx * 6.)); // oops

 float f = - 1.0f - abs(v1.x * v1.y * v1.z) * .05;

 n0 = n0 - 1.0f - abs(v0.x * v0.y * v0.z) * .05;

 n1 = n1 + f;

 n2 = n2 + f;

 return normalize(vec3(d - n0, d - n1, d - n2));

}

Never underestimate the power of luck when programming!

151

Twofield - based on code by w23

It’s basically two sets of spheres following a static pattern, being affected by two fields, causing visually pleasing

distortions.

The original code produced 26 fps on the NVidia Jetson TX2. The compiler had a rough time following the structure of

the world/w1/w2 etc. calls:

// Distance function approximation for the first field only

float t1(vec3 p) {

 float v = 0.;

 for (int i = 0; i < N; ++i) {

 vec3 b = p - b1[i];

 // metaball field used here is a simple sum of inverse-square distances to metaballs centers

 // all numeric constants are empirically tuned

 v += 5. / dot(b, b);

 }

 // add top y=12 (red) plane

 float d = 12. - p.y; v += 3. / (d*d);

 return v;

}

// Second field distance function is basically the same, but uses b2[] metaballs centers and y=-12 plane

float t2(vec3 p) {

 float v = 0.;

 for (int i = 0; i < N; ++i) {

 vec3 b = p - b2[i];

 v += 5. / dot(b, b);

 }

 float d = 12. + p.y; v += 3. / (d*d);

 return v;

}

// "Repulsive" distance functions which account for both fields

float w1(vec3 p) { return 1. - t1(p) + t2(p); }

float w2(vec3 p) { return 1. + t1(p) - t2(p); }

// Combined world function that picks whichever field is the closest one

float world(vec3 p) {

 return min(w1(p), w2(p));

}

vec3 normal(vec3 p) {

 vec2 e = vec2(.001,0.);

 return normalize(vec3(

 world(p+e.xyy) - world(p-e.xyy),

 world(p+e.yxy) - world(p-e.yxy),

 world(p+e.yyx) - world(p-e.yyx)));

}

152

I might be a bit slow, but what's going on there? With a bit of reshuffling and joining and duct-taping it'll look much

cleaner. It'll also make the compiler able to produce reasonable code. Again.

vec2 t1t2(vec3 p)

{

 float v1 = 0.0f;

 float v2 = 0.0f;

 for(int i = 0; i < N; ++i) {

 vec3 b1 = p - b1[i].xyz;

 vec3 b2 = p - b2[i].xyz;

 v1 += 5. / dot(b1, b1);

 v2 += 5. / dot(b2, b2);

 }

 float d1 = 12. - p.y; v1 += 3. / (d1*d1);

 float d2 = 12. + p.y; v2 += 3. / (d2*d2);

 return vec2(v1, v2);

}

float world(vec3 p)

{

 vec2 t12 = t1t2(p);

 float w1 = 1.0f - t12.x + t12.y;

 float w2 = 1.0f + t12.x - t12.y;

 return min(w1, w2);

}

vec3 normal(vec3 p)

{

 vec2 e = vec2(.001,0.);

 return normalize(vec3(world(p + e.xyy) - world(p - e.xyy),

 world(p + e.yxy) - world(p - e.yxy),

 world(p + e.yyx) - world(p - e.yyx)));

}

Move the trajectory and O-calculation to the CPU side for each frame. Also move the color and lightpos tables for

later use. The CPU can adjust those for free while rendering a frame and costs roughly 0.5 fps:

 if(d->type == DEMO_TWOFIELD) {

 // Calculate metaball trajectories

 for(int i = 0; i < NUM; ++i) {

 float t;

 t = (actual_frame-180)/60.0f * 0.3f;

 float fi = i*0.7f;

 gpu2f.b1[i] = v4_set(3.7f*sinf(t +fi), 1.+10.*cos(t*1.1+fi), 2.3*sin(t*2.3+fi), 0.0f);

 fi = i*1.2f;

 gpu2f.b2[i] = v4_set(4.4f*cosf(t*.4+fi),-1.-10.*cos(t*0.7+fi), -2.1*sin(t*1.3+fi), 0.0f);

 }

 // Move lights

 float fw = gpucommon->frame*0.125f;

 float f0 = fw + 0.25f; f0 = f0 - floor(f0);

 float f1 = fw + 0.75f; f1 = f1 - floor(f1);

 float f2 = fw + 0.5f; f2 = f2 - floor(f2);

 float f3 = fw + 0.0f; f3 = f3 - floor(f3);

 gpu2f.l1pos = rotate(f0, 0.0f, 10.0f); gpu2f.l1pos.y = 5.0f;

 gpu2f.l2pos = rotate(f1, 0.0f, 10.0f); gpu2f.l2pos.y = -5.0f;

 gpu2f.l3pos = rotate(f2, 0.0f, 10.0f); gpu2f.l3pos.y = 0.0f;

 gpu2f.l4pos = rotate(f3, 0.0f, 10.0f); gpu2f.l4pos.y = 0.0f;

 // Rotation (disabled)

 float tframe = 0.0f;

 float mousex = tframe;

 float mousey = 540.0f;

153

 float mx = mousex / gpucommon->width *2.0f-1.0f;

 float my = mousey / gpucommon->height*2.0f-1.0f;

 float a = - mx * 2.0f * 3.1415926535f;

 float s = sinf(a), c = cosf(a);

 gpu2f.O = v4_set(s*20.0f, -my*10.0f, c*20.0f, 0.0f);

 }

I never liked the shadows; removing them increases the fps to 43. Adjust the fog-like attenuation from 10-20 to 12-

18 and remove the left and right 256 columns for a boost to 58 fps. In trace, start L at 12.5 instead of 0 for 78 fps, so

it's way over target. That meant the number of spheres (N) could be increased to 8 and the result is 64 fps. Any more

spheres would be too much without changing the paths.

I did some other minor tweaks since I like flashy colors and action: Rotate the light sources around the spheres, make

the lights bigger/smaller depending on Z, remove gamma correction, add fade in/fade out, adjust the specular

values. Average fps ends up at around 62 fps and the load at 93%.

So, it's running in 60 fps except during the transitions. Let's save a bit more by chopping off even more columns in

the far left and right sections. Nothing happens there, anyway. The result is that 37% of the pixels can be eliminated

and lots of time saved. Probably simpler to cover the area with high-level OpenGL triangles, but I just stuffed it in the

shader:

void main(void)

{

 float xedge = 256.0f/1920.0f;

 float yedge2 = 208.0f/1080.0f;

 float xedge2 = 416.0f/1920.0f;

 if((vt.x < xedge || vt.x > 1.0f - xedge) ||

 ((vt.x < xedge2 || vt.x > 1.0f - xedge2) && vt.y > yedge2 && vt.y < 1.0f - yedge2)) {

 outColor = vec4(0.0f, 0.0f, 0.0f, colscale);

 return;

 }

 (...)

There's a trivial reduction in lightball that the compiler wouldn't do. That one was weird: length is rather heavy.

Reducing it to dot > L*L should be trivial for the compiler, but it wouldn't. Change this:

vec3 lightball(vec3 lpos, vec3 lcolor, vec3 O, vec3 D, float L) {

 vec3 ldir = lpos-O;

 float ldist = length(ldir);

 if (ldist > L) return vec3(0.);

 float pw = pow(max(0.,dot(normalize(ldir),D)), 20000.);

 return (normalize(lcolor)+vec3(1.)) * pw;

}

To this:

vec3 lightball(vec3 lpos, vec3 lcolor, vec3 O, vec3 D, float L)

{

 vec3 ldir = lpos - O;

 if(dot(ldir, ldir) > L*L) return vec3(0.0f);

154

And adjust the size with this extra lv calculation:

 float lv = 2.07f - (((lpos.z / 10.0f + 1.0f) / 2.0f) + 1.0f);

 float pw = pow(max(0.0f, dot(normalize(ldir), D)), 20000.0f * lv);

 return (normalize(lcolor) + 1.0f) * pw;

}

And it's 60 fps on the X2. And it's flashy. Cool.

Torus Thingy - based on code by bal-khan

It's a torus that rotates. The torus is built up of tori that's built up of tori... the point should be as clear as tap water.

Many tori. And some dodecahedrons (not dodecahedri) floating around. Of course, it wouldn't be the same without.

Start off by removing unused code. Replace mylength with standard length. No big difference and cheaper. Replace

march with a standard one from noise3d and unroll once:

vec2 march(vec3 pos, vec3 dir)

{

 vec2 dist = vec2(0.0, 0.0);

 float esc = 0.01f;

 int i;

 for(i = 0; i < I_MAX; i += 2) {

 dist.x = scene(pos + dir * dist.y); if(dist.x < esc) break; dist.y += dist.x;

 if(dist.y > FAR) break;

 dist.x = scene(pos + dir * dist.y); if(dist.x < esc) break; dist.y += dist.x;

 if(dist.y > FAR) break;

 }

 return vec2(float(i), dist.y);

}

Yeah, it'll be noisy at distance, but it moves quickly, so it's not particularly important. The dodecahedrons will be a bit

fatter too.

Replace mod calculations in scene:

(...)

 p.xy = rotate(p.xy, iTime * 0.25f * ((int(var-0.5f)&1) == 1 ? -1. : 1.));

(...)

 p.xz = rotate(p.xz, iTime * 1.5f * ((int(var)&1) == 1 ? -1. : 1.) * ((int(vir)&1) == 1 ? -1. : 1.));

(...)

As mentioned earlier, using library math functions in GLSL was horrendously expensive back then. One of the most

expensive ones, atan2, called atan in GLSL, was around 28 instructions that wouldn't get reordered, leading to a

never-ending series of stalls. The shader needed many of them, making it very important that it was done quickly.

155

NVidia's library function was pretty ok, and one possible solution was to convert the assembler version back to GLSL

just to get it reordered. But that wouldn't be any fun. It was possible to do better. The guys at IEEE nailed it in the

article called Full Quadrant Approximations for the Arctangent Function36. I converted the example labelled "code 2"

to GLSL:

// IEEE Signal Processing Magazine (Volume: 30, Issue: 1, Jan. 2013)

// Full Quadrant Approximations for the Arctangent Function

// http://ieeexplore.ieee.org/document/6375931/

#define f2u(x) floatBitsToUint(x)

#define u2f(x) uintBitsToFloat(x)

float atan2(float y, float x)

{

 uint sign_mask = 0x80000000u;

 float b = 0.596227f;

 // Extract the sign bits

 uint ux_s = (sign_mask & f2u(x))^sign_mask;

 uint uy_s = (sign_mask & f2u(y))^sign_mask;

 // Determine the quadrant offset

 float q = float((~ux_s & uy_s) >> 29 | ux_s >> 30);

 // Calculate the arctangent in the first quadrant

 float bxy_a = abs(b * x * y);

 float num = bxy_a + y * y;

 float atan_1q = num / (x * x + bxy_a + num);

 // Translate it to the proper quadrant

 uint uatan_2q = ((ux_s ^ uy_s) | f2u(atan_1q));

 return (q + u2f(uatan_2q)) * PI/2.0f - PI;

}

Like most things in life, atan2 can be done even faster, depending on how much precision is needed. Knut Inge

Hvidsten has published some pioneering work about that in the article Angles, atan2 and taxicabs37:

Taxicab angles could be interesting for some applications needing to produce a large number of

angles per second, if precision is secondary or if the errors could somehow be absorbed into

subsequent use of the angle (table lookup?).

That solution was a bit too imprecise for this particular problem, but it's an interesting read, nonetheless.

The IEEE guys claimed they did a 4-way SSE2 version of it but did not present any code in the article. I'm sensing a

trend in those scientific papers. Weird how often that happens. Trends, I mean. They claimed

Therefore, to obtain a fair comparison, a SSE2 version of the functions shown in “Code 1” and

“Code 2” has been implemented and benchmarked against Intel IPP, with satisfactory results. It

can be noticed that, with the SSE2 implementation, the approximation is nearly three times faster

than the Intel IPP proposal

That only raises more questions than it answers. Code 2 is the 4-quadrant version, so let's go with that. Picking out

their performance numbers from the slightly confusing table, I get the following metrics, which is atan2 per

microsecond, for some bewildering reason:

Code 2 140.588

Intel IPP 7.0 218.195

SSE2 741.25

36 https://ieeexplore.ieee.org/document/6375931
37 https://www.linkedin.com/pulse/angles-atan2-taxicabs-knut-inge-hvidsten/

https://ieeexplore.ieee.org/document/6375931
https://www.linkedin.com/pulse/angles-atan2-taxicabs-knut-inge-hvidsten/

156

It's pretty easy making such statements when no code is shown. To quote a former Transmeta employee: "Talk is

cheap. Show me the code." If the code were just a raw expansion of "Code 2" to SSE2, it would probably stall a lot. I

have no clue what the Intel IPP library did. But ok, that's a factor 5.2, which is pretty neat.

Is it possible to do better? Probably, by just doing even more of them. If the next SIMD instruction depends on the

previous one, the going's gonna get slow. To get some throughput, do 2x4 for 8 atan2 each call, and it'll stall much

less. But let's not go down that route. It has been covered already. Let's instead try doing it on the classic Neon. A

straightforward 2x4 version of the code above would look like this:

#define B 0.596227f

#define PI 3.1415926535f

#define MASK 0x80000000

#define u32_f32 vreinterpretq_u32_f32

#define f32_u32 vreinterpretq_f32_u32

static inline float32x4x2_t satan2_8(float32x4_t y0, float32x4_t x0, float32x4_t y1, float32x4_t x1)

{

 const float32x2_t v1 = { B, PI/2 };

 const float32x4_t nan4 = { NAN, NAN, NAN, NAN };

 const float32x4_t pi = { PI, PI, PI, PI };

 const uint32x4_t sign_mask = { MASK, MASK, MASK, MASK };

 // Extract the sign bits

 uint32x4_t ux_s0 = vbicq_u32(sign_mask, u32_f32(x0));

 uint32x4_t uy_s0 = vbicq_u32(sign_mask, u32_f32(y0));

 uint32x4_t ux_s1 = vbicq_u32(sign_mask, u32_f32(x1));

 uint32x4_t uy_s1 = vbicq_u32(sign_mask, u32_f32(y1));

 // Determine the quadrant offset

 float32x4_t q0 = vcvtq_f32_u32(vorrq_u32(vshrq_n_u32(vbicq_u32(uy_s0, ux_s0), 29),

 vshrq_n_u32(ux_s0, 30)));

 float32x4_t q1 = vcvtq_f32_u32(vorrq_u32(vshrq_n_u32(vbicq_u32(uy_s1, ux_s1), 29),

 vshrq_n_u32(ux_s1, 30)));

 // Calculate the arctangent in the first quadrant

 float32x4_t bxy_a0 = vabsq_f32(vmulq_lane_f32(vmulq_f32(x0, y0), v1, 0));

 float32x4_t bxy_a1 = vabsq_f32(vmulq_lane_f32(vmulq_f32(x1, y1), v1, 0));

 float32x4_t num0 = vaddq_f32(bxy_a0, vmulq_f32(y0, y0));

 float32x4_t num1 = vaddq_f32(bxy_a1, vmulq_f32(y1, y1));

 float32x4_t atan_1q0 = vmulq_f32(vrecpeq_f32(vaddq_f32(vaddq_f32(vmulq_f32(x0,x0),bxy_a0),num0)),num0);

 float32x4_t atan_1q1 = vmulq_f32(vrecpeq_f32(vaddq_f32(vaddq_f32(vmulq_f32(x1,x1),bxy_a1),num1)),num1);

 // Translate it to the proper quadrant

 uint32x4_t uatan_2q0 = vorrq_u32(veorq_u32(ux_s0, uy_s0), u32_f32(atan_1q0));

 uint32x4_t uatan_2q1 = vorrq_u32(veorq_u32(ux_s1, uy_s1), u32_f32(atan_1q1));

 float32x4x2_t r01;

 r01.val[0] = vsubq_f32(vmulq_lane_f32(vaddq_f32(q0, f32_u32(uatan_2q0)), v1, 1), pi);

 r01.val[1] = vsubq_f32(vmulq_lane_f32(vaddq_f32(q1, f32_u32(uatan_2q1)), v1, 1), pi);

A bonus: NaN to 0.0 conversion. Might be useful, but usually not. Use it if needed:

 // Convert NaN to 0.0f

 uint32x4_t mask0 = vceqq_u32(u32_f32(r01.val[0]), u32_f32(nan4));

 uint32x4_t mask1 = vceqq_u32(u32_f32(r01.val[1]), u32_f32(nan4));

 r01.val[0] = f32_u32(vbicq_u32(u32_f32(r01.val[0]), mask0));

 r01.val[1] = f32_u32(vbicq_u32(u32_f32(r01.val[1]), mask1));

 return r01;

}

157

How often is it possible to name a function satan without insulting anyone? It was hilarious. Right up there with

calling a video demuxer dux38, or a buffer holding NAL units nalle39, or a muxer Mux-O-Matic40. Have been doing too

much H.264 video processing lately. Sorry, I'll turn on the air moisturizer. The jokes are too dry.

Anyway, there's also the question of why Intel's IPP implementation sucked, but that ship slid off the edge of the

map. Didn't want to spend days figuring out how it worked. And there might be a question about the accuracy. I

really don't care about that either, but somebody else might. Heck, if a couple of million atan2 per second is needed,

it probably doesn't matter if answers are a bit, but not too much, off. It's going to be needed very soon.

So, let's get back to the shader under discussion. It needs many atan2 calls, so the best course of action would be to

remove as many as possible. In some places they appear in pairs where the input of the second depends on the

result of the first. This optimization is not that easy to spot and approximately correct. A bonus is that it's brutally

fast. It all goes to hell when it's not given which side of the torus is displayed: Look closely when it's running.

Sometimes the back tori split. Oops. It's close enough most of the time.

The unchanged code:

#define TAU PI*2.0f

vec2 modA(vec2 p, float count)

{

 float an = TAU / count;

 float a = atan(p.y, p.x) + an * 0.5f;

 a = mod(a, an) - an * 0.5f;

 return vec2(cos(a), sin(a)) * length(p);

}

(...)

 // center spikes

 float var = (atan(p.x, p.z) + PI) / TAU;

 var = var * 40.0f;

 p.xz = modA(p.xz, 40.0f);

For almost all, a.k.a. “many”, known values of var, this reduces to PI/4, so make a simpler modA for the second call

and use the first result as input:

vec2 modAs2(vec2 p, float count, float s2)

{

 float an = TAU / count;

 float a = s2 + an * 0.5f + PI / 4.0f;

 a = mod(a, an) - an * 0.5f;

 return vec2(cos(a), sin(a)) * length(p);

}

(...)

 // center spikes

 float s2 = satan2(p.x, p.z);

 float var = (s2 + PI) / TAU * 40.0f;

 p.xz = modAs2(p.xz, 40.0f, s2);

And ditto for the orange filler. This...

 float vir = (atan(p.x, p.y)+ PI)/(TAU);

 var = vir*30.;

 p.xy = modA(p.xy, 30.)-vec2(.0,.0);

 p.xz -= vec2(4., .0);

 q = vec2(length(p.zx)-0.25, p.y-.0);

 ming = mylength(q)-.05;

 mind = min(mind, ming);

38 From the movie Bloodsport, which is based on the life of martial artist Frank Dux, played by Jean-Claude Van Damme.
39 Swedish for toy bear.
40 Ice-O-Matic is an ice machine. Cube-O-Matic a legendary Amiga demo.

158

...becomes the much simpler:

 s2 = satan2(p.x, p.y);

 float vir = (s2 + PI) / TAU;

 var = vir * 30.0f;

 p.xy = modAs2(p.xy, 30.0f, s2);

 p.x -= 4.0f;

 q = vec2(length(p.zx) - 0.25f, p.y);

 float ming = length(q) - 0.05f;

 mind = min(mind, ming);

Let's follow up with some more reductions. D'oh of the week: I_MAX is 100. Sounds rather arbitrary, it never

executed 100 iterations anyway. But it will seriously affect the unrolling. The compiler is going to stumble, since

there's an if-break in there, so a precise estimate is important. Otherwise, the generated code will end up too heavy

and sink faster than a lead weight in a swimming pool.

Let's slightly redo the march function so it's quicker at a cost of some extra noise. The log call isn't really needed. So,

we go from this:

#define I_MAX 100

(...)

vec2 march(vec3 pos, vec3 dir)

{

 vec2 dist = vec2(0.0, 0.0);

 int i;

 for(i = 0; i < I_MAX+1; i++) {

 vec3 p = pos + dir * dist.y;

 dist.x = scene(p);

 dist.y += dist.x;

 float dinamyceps = -dist.x+(dist.y)*(1.0f/1500.0f);

 if(dist.y > FAR || dist.x < dinamyceps || log(dist.y*dist.y/dist.x*(1.0f/100000.0f)) > 0.0f)
break;

 }

 return vec2(float(i), dist.y);

}

To this, which is almost the same. Awfully close:

#define I_MAX 52

(...)

vec2 march(vec3 pos, vec3 dir)

{

 vec2 dist = vec2(0.0, 0.0);

 float esc = 0.01f;

 int i;

 for(i = 0; i < I_MAX; i += 2) {

 dist.x = scene(pos + dir * dist.y); if(dist.x < esc) break;

 dist.y += dist.x; if(dist.y > FAR) break;

 dist.x = scene(pos + dir * dist.y); if(dist.x < esc) break;

 dist.y += dist.x; if(dist.y > FAR) break;

 }

 return vec2(float(i), dist.y);

}

As mentioned, it will fail now and then, and it really needs good, but not great, atan2 precision. I suggest inserting

Mr Hvidsten's super-ultra-fast version mentioned earlier for a trippy experience!

159

The Control Code and a Trip to Denver
The control code grew into an unwieldy lump of about 2000 lines. The raytracer control code ended up in there,

along with, well, everything else. My knowledge of host side OpenGL was not fantastic then, and not now either, so

there were lots of trying and failing and finding out that all errors were caused by missing glBindTexture calls. I still

have no idea what it does, but it seemed to be important. Let's review the structure of it.

The demo was supposed to run on Android, which behaved like a three-legged dog named Lucky. All the useful stuff

from Linux had been removed, so I had to resort to the old syscall interface. Good going, Google! I had that cool 90s

Linux feeling again.

Anyway, a simple operation like setcore turned into a pile of rubbish:

static bool setcore(int coreid)

{

 int rc;

 uint32_t srcmask = 1 << coreid;

 rc = syscall(__NR_sched_setaffinity, gettid(), sizeof(srcmask), &srcmask);

 if(rc) {

 printf("Error syscall setaffinity: syscallres=%d, errno=%d\n", rc, errno);

 return false;

 }

 uint32_t dstmask;

 rc = syscall(__NR_sched_getaffinity, gettid(), sizeof(dstmask), &dstmask);

 if(rc != sizeof(dstmask)) {

 printf("Error syscall getaffinity: syscallres=%d, errno=%d\n", rc, errno);

 return false;

 }

 if(srcmask != dstmask) {

 printf("setcore error: %d %08x %08x\n", coreid, srcmask, dstmask);

 return false;

 }

 return true;

}

setcore was life critical on the X2. If the code ended up running on one of the crap cores, it would have been a total

disaster, so I locked it on a normal core.

In case you didn't know, the wise heads at NVidia decided to equip the X2 with 4 normal ARM A57 cores, and 2 that

used super-advanced dynamic recompilation of the running code, known as Denver 2. They had tried that earlier, in

the Tegra K1, which had Denver 1. It performed way below average.

I tried figuring out what the hell was going on by doing some ultra-synthetic tests in assembler, and the results were

crazy. Let's look at instruction issue rate (not to be confused with completion rate, obviously):

Blueish is a regular A57, brownish/orangey is Denver 2. It's Excel default colors. I have no idea why everything has to

look like puke by default. Same problem in Visual Studio 2019: Default dark theme has only puke colored elements,

160

and the background is not even totally black. Seriously, guys! Must be a Microsoft issue, and sometimes Linux:

Nobody has forgotten the brown Gnome desktop from the early 2000s, right? The puke color scheme was really

popular in Windows 8. When everything has drab colors, the day is gonna be dull. Or maybe the other way around.

Anyway, results were all over the place. Denver 2 was very fast on bit and integer operations but gave completely

anomalous results regarding two very important instructions: fp32 fma and mul with issue rates of just 1 per cycle.

And that's not all: Generic fp32 workloads seemed to trigger a bug in the code translation, which made measuring

time completely nondeterministic, and it was even worse if fp32 and Neon instructions were mixed. To make it even

more confusing: Pure 64-bit double workloads were roughly 18% faster than 32-bit float on Denver 2. Err, what? To

quote the game Zero Wing again: "Somebody set up us the bomb."

I had a feeling it was a remnant of TransMeta's ideas: They made some chips back in the early 2000s that tried to

emulate x86 chips in hardware. About as stupid as it sounds. Anyway, NVidia had licensed their patents and wanted

to put them to use, I guess. Wild guess. Not about the licensing, but about the use.

And, as usual, the question has to be asked: Would it possible to get around these issues and get the Denver 2 cores

to behave normally? Signs pointed to yes: The trick was to order the instructions in a particular manner and not mix

float and Neon, for example. A fair bit of work was put into that, but it was never completed. It was a time where

average managers wanted more average code per hour, and none of this pointless research.

It was lucky that NVidia didn't use that technology again, then! Right. The NVidia Xavier, released in 2019, uses a

similar system on all 8 cores! They updated the name of the fancy cores to Carmel, given that the name Denver had

received a few shots across the bow, but was it still crap? Here's a couple of quotes from AnandTech's article

Investigating NVIDIA's Jetson AGX: A Look at Xavier and Its Carmel Cores41:

Here NVIDIA’s results landed in relatively modest territories, with Carmel landing at around, or

slightly higher performance levels of an Arm Cortex-A75.

(...)again the rather odd CPU cluster configuration can result in scenarios where not all eight cores

are able to perform at their peak performance under some circumstances.

I rest my case. But if everything evens out and I win the lottery, I might order an Xavier soon. For all I know, they

might actually have fixed the code translation, though the AnandTech quotes are not promising.

Let's get back on track. There are some averaging scalers in the control code for rendering it in higher resolution and

downscaling it for a high-quality video. One generic, and one ARM specific. The ARM specific one is completely

straightforward and simple. Almost. Remarkably close, trust me. Let's have a look at it.

Get rid of vreinterpret and vget crap:

#define qu64u8 vreinterpretq_u64_u8

#define qu64u16 vreinterpretq_u64_u16

#define u8u64 vreinterpret_u8_u64

#define u16u64 vreinterpret_u16_u64

#define u8u16 vreinterpret_u8_u16

#define getq_u64 vgetq_lane_u64

41 https://www.anandtech.com/show/13584/nvidia-xavier-agx-hands-on-carmel-and-more/5

https://www.anandtech.com/show/13584/nvidia-xavier-agx-hands-on-carmel-and-more/5

161

Make a scale function, assume stuff is aligned etc. 4 rows are read at a time since it's a factor 4 average downscaler:

void scale_factor_4(uint32_t *src, int srcw, int srch, uint32_t *dst)

{

 int outwidth = srcw >> 2;

 int outheight = srch >> 2;

 for(int y = 0; y < outheight; y++) {

 uint32_t *srcrow0 = __builtin_assume_aligned(src + (y+0) * 4 * srcw, 8);

 uint32_t *srcrow1 = __builtin_assume_aligned(srcrow0 + srcw, 8);

 uint32_t *srcrow2 = __builtin_assume_aligned(srcrow1 + srcw, 8);

 uint32_t *srcrow3 = __builtin_assume_aligned(srcrow2 + srcw, 8);

 uint32_t *dstrow = __builtin_assume_aligned(dst + y * outwidth, 8);

 for(int x = 0; x < outwidth; x += 2) {

 uint8x16_t r00, r01, r02, r03;

 uint16x8_t s01h, s01l, s23h, s23l;

 uint16x8_t shl;

Since it's 32-bit pixels, 4 pixels*4=16 bytes are read from each row:

 r00 = vld1q_u8((void *)srcrow0); srcrow0 += 4;

 r01 = vld1q_u8((void *)srcrow1); srcrow1 += 4;

 r02 = vld1q_u8((void *)srcrow2); srcrow2 += 4;

 r03 = vld1q_u8((void *)srcrow3); srcrow3 += 4;

Add up everything with an old friend: vaddl. And an army of reinterprets and crap, since it's, well, ARM. Picture this

code without the macros and strict code formatting rules.

 s01l = vaddl_u8(u8u64(getq_u64(qu64u8(r00), 0)), u8u64(getq_u64(qu64u8(r01), 0)));

 s01h = vaddl_u8(u8u64(getq_u64(qu64u8(r00), 1)), u8u64(getq_u64(qu64u8(r01), 1)));

 s23l = vaddl_u8(u8u64(getq_u64(qu64u8(r02), 0)), u8u64(getq_u64(qu64u8(r03), 0)));

 s23h = vaddl_u8(u8u64(getq_u64(qu64u8(r02), 1)), u8u64(getq_u64(qu64u8(r03), 1)));

That gives a set of high/low 16-bit results. Add them up:

 shl = vaddq_u16(vaddq_u16(s01l, s23l), vaddq_u16(s01h, s23h));

Shift the answers down. What do we know now? The high byte in each 16-bit unit is empty. Useless, really.

Remember that.

 uint16x4_t p00 = vshr_n_u16(vadd_u16(u16u64(getq_u64(qu64u16(shl), 0)),

 u16u64(getq_u64(qu64u16(shl), 1))), 4);

Do the same for the next set of 4 pixels:

 r00 = vld1q_u8((void *)srcrow0); srcrow0 += 4;

 r01 = vld1q_u8((void *)srcrow1); srcrow1 += 4;

 r02 = vld1q_u8((void *)srcrow2); srcrow2 += 4;

 r03 = vld1q_u8((void *)srcrow3); srcrow3 += 4;

 s01l = vaddl_u8(u8u64(getq_u64(qu64u8(r00), 0)), u8u64(getq_u64(qu64u8(r01), 0)));

 s01h = vaddl_u8(u8u64(getq_u64(qu64u8(r00), 1)), u8u64(getq_u64(qu64u8(r01), 1)));

 s23l = vaddl_u8(u8u64(getq_u64(qu64u8(r02), 0)), u8u64(getq_u64(qu64u8(r03), 0)));

 s23h = vaddl_u8(u8u64(getq_u64(qu64u8(r02), 1)), u8u64(getq_u64(qu64u8(r03), 1)));

 shl = vaddq_u16(vaddq_u16(s01l, s23l), vaddq_u16(s01h, s23h));

 uint16x4_t p01 = vshr_n_u16(vadd_u16(u16_u64(getq_u64(qu64_u16(shl), 0)),

 u16_u64(getq_u64(qu64_u16(shl), 1))), 4);

162

vuzp de-interleaves bytes in each half, so one half will contain interesting stuff, and the other crap. Lucky the high

bytes were useless. Naah, not really. Not much is based on luck in this business.

 uint8x8x2_t pout = vuzp_u8(u8_u16(p00), u8_u16(p01));

 vst1_u8((void *)dstrow, pout.val[0]); dstrow += 2;

 }

 }

}

Wouldn't it have been wise to process even more bytes? Yes, probably, but there was the register drain, and there

was a perfectly good reason the rows were 64-bit aligned only: Earlier versions could be run in even lower

resolutions, and the frames returned from Android were always 64-bit aligned.

vuzp (de-interleave) and vzip (interleave) deserve a mention. The assembler instructions take two parameters only,

so they'll need to read from the registers, shuffle them, and write back to the same registers. I wonder how they

handled that internally because the latency is rather high. If the same can be accomplished with a couple of vtrn -

transpose - instead, it's always cheaper. AArch64 Neon fixed that problem by removing them and getting Tilera-style

versions instead. But they were fun instructions!

That leads to the obvious question: Why didn't I use AArch64 Neon intrinsics there? Well, there were two compilers

available for Android back then. One could do AArch64 Neon but wouldn't compile the display stuff and vice versa. I

tried compiling parts with different compilers and linking it and spent a day debugging the linker. Gave up. Wasn't

critical.

Let's get back to the control code. Didn't find any straightforward way to represent the shader common data on the

host side, so I made one common struct for those that don't have anything and just replicated it.

typedef struct {

 float width, height;

 float frame;

 float colscale;

} gpu_default;

typedef struct {

 float width, height;

 float frame;

 float colscale;

 v4 noisetable[TABLELEN];

} gpu_noise3d;

 // ... etc ...

The host side control blocks. I didn't bother much with the amount of data. It's unimportant, just had to find the

biggest one. Guess who won? It's always the raytracer, so just copy that much data every frame. Doesn't matter

much in terms of execution speed.

 // Gpu data blobs

 void *gpudata = NULL;

 int gpudatalen = sizeof(gpu_tracer); // largest

 gpu_default gpudef;

 gpu_noise3d gpu3d;

 gpu_twofield gpu2f;

 gpu_quat gpuquat;

 gpu_tracer gputracer;

 gpu_seascape gpusea;

 gpu_default *gpucommon = NULL;

The loading of shaders and their compilation and linking is trivial. Probably found it somewhere. I'm guessing on the

internet. Not completely trivial, just hundreds of lines of terminally boring code.

163

Finally! The main loop, but first setcore has to be called, with an appropriate comment:

 setcore(3); // stay off Denver2, sucky floating point

(...)

 while(true) {

Next came all the fiddly stuff with keeping track of which shader to display etc. And control the zooming, and make

sure the text between Galactic Dance and Glow City really moves out of the buffer. Yeah, it was supposed to be that

way.

 if(d->type != DEMO_GALDANCE && demoframe == demo_fadetime) {

 // new bg texts after fade done

 gen_bg(bgbuf, bgw, bgh);

 } else if(d->type == DEMO_GALDANCE ||(d->type == DEMO_GLOWCITY && demoframe <= demo_fadetime-1)) {

 // generate credits in galdance and the fade to glow city every frame

 if(actual_frame > 84) { // really

 gen_credits(bgbuf, bgw, bgh, actual_frame);

 }

 }

A lot of effort was put into making the transitions look good, hence the earlier mentioned scaler. If it's a transition,

first draw the background text into a full-size buffer, then the shader in the middle with correct alpha, and finally the

overlapping text. Then cut from the center of that and scale it in place. A lot of work, as mentioned earlier, but

personally I think it turned out great.

It was sort of fiddly calculating the zoom values. The comment from back then was spot-on:

 // Zoom in/out

 // Seriously, who writes this crap? Please go stand in the corner.

 int ww = winwidth, wh = winheight;

 if(demoframe <= demo_zoomtime) {

 // zoom in width..winwidth

 // width..winwidth

 ww = winwidth + (bgw - winwidth)*(demo_zoomtime-demoframe)/demo_zoomtime;

 wh = winheight + (bgh - winheight)*(demo_zoomtime-demoframe)/demo_zoomtime;

 } else if(demoframe >= demo_runtime-demo_zoomtime) {

 // zoom out winwidth..width

 int f0 = demoframe - (demo_runtime - demo_zoomtime);

 ww = bgw - (bgw - winwidth)*(demo_zoomtime-f0)/demo_zoomtime;

 wh = bgh - (bgh - winheight)*(demo_zoomtime-f0)/demo_zoomtime;

 } else {

 ww = winwidth;

 wh = winheight;

 }

 // shrink window a bit, avoid edge artifacts

 if(ww != width) ww -= 2;

 if(wh != height) wh -= 2;

That's how code ends up looking when you're running out of time. And if it works, nobody's going to bother fixing it

later. It worked. Nobody fixed it. What a surprise.

Next up was the shader precalc per frame bits. It has been covered earlier. The entire display was drawn in a Frame

Buffer Object (FBO). I know it wasn't recommended, but it also worked, so nobody fixed it. It would probably have

been wiser to render it directly to a texture.

The control code was single-threaded and locked on core 3, and the CPU load bar only shows that core. It's

interesting to note that the load increases when running the raytracer, since it does the probing, as explained earlier,

but not by a lot. Plenty of CPU headroom.

164

An interesting observation:

 if(display)

 eglSwapBuffers(gl.display, gl.surface);

 else

 glReadPixels(0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, debugbuf); // ! glFinish() too smart

If the code was run with the display turned off and no saving of images, glFinish would do nothing. Yeah, ok, but it

ruined test runs. Sort of like when the optimizer removes all the code because the answers aren't used. So, I had to

force it by actually reading back a pixel.

One part that's missing is the audio playback code. The two music pieces were just glued together and played back

with some code that had a stingy license, so it had to be removed. Sorry. Just play them with a random player. It

wasn't more advanced than that.

It would have been nice to try to get it running on an Xavier... in 4K. Just have to win the lottery first.

Unfortunately, I didn't have a HDMI recorder for recording the video, so it could be run in a mode where it saved the

CPU and GPU load to two text files. These could be read back on the next pass and inserted into the load bars while

saving each frame separately. Took a long time, but the video was at least a faithful reproduction of the original.

Which was a rip-off. Time to do some new stuff.

